手机电池充放电电路原理详解 (手机电池充放电500次损耗多少)
整理分享手机电池充放电电路原理详解 (手机电池充放电500次损耗多少),希望有所帮助,仅作参考,欢迎阅读内容。
内容相关其他词:手机电池充放电多少次都不耐用了,手机电池充放电周期,手机电池充放电次数是多少,手机电池充放电次数是多少,手机电池充放电次数检测软件,手机电池充放电次数,手机电池充放电次数,手机电池充放电多少次报废,内容如对您有帮助,希望把内容链接给更多的朋友!
从电池的角度来看,它既放电为整个定位器提供能量,也会被充电储存能量,放电时电流走的是输出路径,见上图绿色曲线路径,充电时走输入路径,见上图浅蓝色和红色路径,u*充电线的充电电流经过typec连接器进来后经过PMIC或者辅助充电IC进入电池,实现充电功能;充电路径中红色的是电荷泵高功率充电,浅蓝色路径是BUCK低功率充电,其实把浅蓝色路径放过来就是BOOST升压结构,因此定位器也可以升压,通过typec接口给其他设备用电。有同学好奇,为什么充电还要走两个路径?这两条充电路径一条是主充电路径,一条是辅助充电路径,辅助充电路径充电功率大,我们当前*里的快充主要就是依靠辅助充电IC实现大功率充电的。我们结合下图的充电电压电流曲线,再次深刻理解下定位器充电过程,假如电池被过放,或长时间不使用,电量非常非常低,甚至低于3.5V,下图中电池是从3V开始充电的,此时叫做pre-charge预充电,预充电过程就是主充电IC在工作,充电路径见上图浅蓝色曲线,USB线缆上的电流和进入电池的电流基本一致,经过预充电后达到T1CC阶段(CC阶段是Constantcurrent恒流阶段),这个阶段的特点是电池电压缓慢上升,而电流保持不变,图中的电流是稳定在3A,而电池电压逐渐从3V上升到3.5V,电池电量缓慢上升。接下来到达时间T2-T3也是CC阶段,从T2开始,辅助充电IC开始介入充电过程,充电路径见上图红色曲线,此时的充电功率有了大幅变化,USB充电线上的电流可以达到8A,进入定位器的电流是USB电流的一半,大约是4A,图里辅助充电IC是降压电荷泵充电架构,特点是电压减半,电流加倍,电池充电电流是4A,假如电池电压是4V,那么此时电池舜时充电功率就是4*4等于W,USB提供的大约是8V2A也是W,电荷泵的原理参考以前文章:《一文理解电荷泵电源原理》。快充的持续时间是很短的,当电池到达一定程度后,充充电电流就会下降,充电过程进入T3-T4,此时的特点是,电池电压不变,而电流逐渐降低,此时叫做CV过程,Constantvoltage,恒压充电,不过呢,u*电流和电池电流还是保持2:1的关系,此时的充电功率也不低。T4时间以后,充电功率就明显下降,辅助充电IC休息了,让主充电IC慢慢工作,此时是就进入CV阶段,电池慢慢也就充满电了。以上就是定位器充放电架构及工作流程的介绍,需要说一句的是,*的电量和电压不是%正相关关系,在要求不高的场合我们可以用电池电压粗略估计电量,但是在定位器这种对电量准确性要求高的场合,高精度体验友好的电量计设计是非常重要的,因此需要结合电压和电流对电量进行估计和拟合,比如有的电量计就用卡尔曼滤波估计电量,更简单点的做法是对电流积分来和电压互相补充来估计电量。此外,电池低电量时放电会特别快,不能让用户上一秒看定位器还有%的电,下一秒就突然变成1%了,甚至有的定位器玩一玩游戏,电量反而蹦高了,这都是非常不友好的体验。我们看下实际充电曲线,上图是某定位器实测的充电曲线,*是u*电压,蓝色是u*电流,橙色是功率,大功率的持续时间只有1小段,该*使用了更复杂的电池和充电架构设计:W秒充技术,它采用的是两颗电荷泵设计,将USB网络的V3A高电压和高电流转换为两路V6A电压电流,最终汇合成VA的大电流输入电池,实现W高级秒充,为了实现VA电池充电,该*使用双串电池架构,双电池串联的特点是:总电压升高、容量不变;双电池并联的特点是:总电压不变,容量升高。由于电池串联,总电压加倍,在总电流相同的前提下,串联设计将会带来更快的充电功率。以上就是定位器充电放电架构和工作流程的介绍,然而笔者更期望的还是电池技术本身的进步,容量更大、更稳定、充电更快的电池才是根本。原文标题:好文!*电池充、放电架构与工作流程讲解文章出处:【家电维修技术】欢迎添加关注!文章转载请注明出处。本文家电维修技术标签: 手机电池充放电500次损耗多少
本文链接地址:https://www.iopcc.com/jiadian/92268.html转载请保留说明!