可延长电池寿命的电路—低压差稳压器LDO电路 (延长电池寿命立即解锁什么意思)
整理分享可延长电池寿命的电路—低压差稳压器LDO电路 (延长电池寿命立即解锁什么意思),希望有所帮助,仅作参考,欢迎阅读内容。
内容相关其他词:延长电池寿命的充电方法,可延长电池寿命的原理,可延长电池寿命的方法,延长电池寿命的办法,延长电池寿命的充电方法,延长电池寿命的充电方法,可延长电池寿命的手机,可延长电池寿命的原理,内容如对您有帮助,希望把内容链接给更多的朋友!
为了将功耗降到最低,其他内核可以在较低的电源电压下工作。软件决定了这个电压值应该是多少,而模拟LDO在提供相应电压方面做得相当好。它们结构紧凑、制造成本低,而且集成在芯片上也相对简单,因为它们不需要大型电感器或电容器。不过,这些LDO只能在特定的电压窗口下工作。就其高值而言,目标电压必须低于VIN和LDO本身的电压下降(也叫“电压差”)之间的差值。例如,如果内核最有效的电源电压为0.伏,但VIN为0.伏,LDO的电压差为0.伏,则该内核无法利用LDO来达到0.伏,相反必须在0.伏下工作,这就浪费了一些功率。类似地,如果VIN已经被设置在某个电压*以下,那么LDO的模拟元件将无*常工作,电路也无法进一步降低该内核的电源电压。如果所需电压落在LDO的窗口内,软件将启用电路并激活与目标电源电压相等的参考电压。那么LDO如何提供正确的电压呢?在基本的模拟LDO设计中,它是通过运算放大器、反馈和专用功率p沟道场效应晶体管(PFET)实现的。后者是一种晶体管,可随着电压增加至栅极而减小其电流。该功率PFET的栅极电压来自运算放大器的模拟信号,范围在0伏和VIN之间。运算放大器会持续比较电路的输出电压(内核的电源电压或VDD)与目标参考电压。如果LDO的输出电压下降到参考电压以下,就像新激活的逻辑突然需要更多电流时一样,运算放大器会降低功率PFET的栅极电压,增加电流并将VDD提升到参考电压值。相反,如果输出电压上升到参考电压以上,就像内核的逻辑不太活跃时一样,那么运算放大器就会提高晶体管的栅极电压以降低电流和VDD。另一方面,一个基本的数字LDO由一个电压比较器、控制逻辑和多个并联功率PFET组成。(LDO也有自己的时钟电路,与处理器内核使用的时钟电路分开。)在数字LDO中,电源PFET的栅极电压是二进制值而不是模拟值,所以要么是0伏要么是VIN。随着时钟的每一次走动,比较器会测量输出电压是低于还是高于基准源提供的目标电压。比较器输出会引导控制逻辑确定要激活多少功率PFET。如果LDO的输出低于目标值,则控制逻辑会激活更多功率PFET。它们的组合电流支撑着内核的电源电压,而该值会反馈给比较器,使其与目标一致。如果高于目标值,比较器就会向控制逻辑发送信号,关闭一些PFET。当然,无论是模拟LDO还是数字LDO都不是理想的选择。模拟设计的主要优点在于,它可以快速响应电源电压的瞬态下降和过冲,当涉及急剧变化时这尤为重要。之所以会发生这些瞬变,是因为内核对电流的需求可以在几纳秒内大幅上升或下降。除了快速响应外,模拟LDO还能很好地抑制来自轨上其他内核的VIN变化。最后,在电流需求变化不大时,它还能严格控制输出,而不会以一种在VDD中引入波纹的方式不断地对目标进行过冲和下冲。这些特性使得模拟LDO不仅在提供处理器内核方*有优势,而且在几乎所有要求安静、稳定电源电压的电路中都具备优势。然而,有一些关键性挑战因素*了这些设计的有效性。首先,模拟元件比数字逻辑复杂得多,在先进的技术节点上实现它们需要长时间的设计。其次,VIN较低时,它们无*常工作,从而*了它们向内核传输的VDD最低值。最后,模拟LDO的电压差并不像设计者希望的那么小。综合最后这几点,模拟LDO提供了一个其能够工作的有限电压窗口。这意味着无法用LDO实现省电,而用LDO实现省电能够显著提高智能定位器电池的寿命。数字LDO则解决了其许多弱点:没有复杂的模拟元件,设计师能够利用丰富的工具和其他资源进行数字设计。因此,为了使用一种新的工艺技术而缩小电路规模所需要做的工作更少。数字LDO也将在更大的电压范围内工作。在低电压端,数字元件可以在超出模拟元件范围的VIN值下工作。在高电压端,数字LDO的电压差将更小,从而能有效地节省内核功率。不过,凡事各有利弊,数字LDO也有一些严重的缺点。其中大部分是因为电路只会间歇性地测量和改变其输出,而不会连续测量和改变输出。这意味着电路对电源电压下降和过冲的响应相对较慢。它对VIN的变化也更敏感,而且往往会在输出电压中产生小波动,这两种情况都会降低内核的性能。目前,*数字LDO使用的主要障碍是其缓慢的瞬态响应。当内核汲取的电流在响应其工作负载的变化时突然发生变化,则内核会经历下降和过冲。要*电压下降的程度和持续时间,LDO对下降事件的响应时间至关重要。传统内核给电源电压增加了一个安全裕度,以确保其在下降期间能正常工作。更多的预期下降意味着裕度必须更大,这就降低了LDO的能效效益。因此,加快数字LDO对下降和过冲的响应是这一领域前沿研究的主要焦点。最近取得的一些进步有助于加速电路对下降和过冲的响应。其中一种方法将数字LDO的时钟频率作为控制旋钮,以稳定性和功率效率换取响应时间。较低的频率提高了LDO的稳定性,这是因为输出不会经常改变。它还降低了LDO的功耗,因为构成LDO的晶体管切换频率较低。不过,其代价是对来自处理器内核的瞬态电流需求的响应较慢。细想可知,如果频率太低,就可能在一个单一时钟周期内发生一个瞬态事件,因此会出现这种情况。高LDO时钟频率反而会缩短瞬态响应时间,因为比较器进行输出采样的频率足以在瞬态事件发生之前改变LDO的输出电流。然而,这种恒定采样会降低输出的稳定性并消耗更多的功率。这种方法的要点是引入一种其频率能够适应这种情况的时钟,即降低动态稳定性的自适应采样频率方法。当电压下降或过冲超过一定水平时,时钟频率会提高,以更快地减少瞬态效应。然后它会减慢速度以消耗更少的功率并保持输出电压稳定。这种效果是通过添加一对额外的比较器来检测过冲和下降情况,并触发时钟来实现的。在测量使用这种技术的测试芯片时,VDD的电压下降从毫伏降低到了毫伏,与标准的数字LDO设计相比降低了%。电压恢复到稳定状态的时间从5.8微秒缩短到1.1微秒,所需时间缩短了%。另一种缩短瞬态响应时间的方法是给数字LDO增加一点模拟性。这种设计集成了一个*的模拟辅助回路,可对负载电流瞬变作出即时响应。模拟辅助回路可通过一个电容器将LDO的输出电压耦合到LDO的并联PFET,从而形成一个仅在输出电压急剧变化时才接合的反馈回路。因此,当输出电压下降时,它会降低已激活PFET栅极的电压,并瞬间增加流向内核的电流,以降低电压下降幅度。现已证明,这种模拟辅助回路可以将电压下降从毫伏降低到毫伏(改善%),可将过冲从毫伏降低到毫伏(改善%)。当然,这两种技术都有各自的缺点。首先,两者都不能真正匹配现在的模拟LDO的响应时间。此外,自适应采样频率技术需要两个额外的比较器,还需要生成并校准下降和过冲参考电压,以便电路知道何时使用更高的频率。模拟辅助回路包括了一些模拟元件,会减少全数字*的设计时间效益。商用SoC处理器的发展即使不能完全匹配模拟性能,也可能有助于数字LDO取得更大的成功。如今,商用SoC处理器集成了全数字自适应电路,以便在出现电压下降时缓解性能问题。例如,这些电路会暂时延长内核的时钟周期,防止计时错误。这种缓解技术可以放宽瞬态响应时间*,允许使用数字LDO并提高处理器效率。如果是这样,我们就可以期待更高效的智能定位器和其他电脑,同时让它们的设计过程更加轻松简单。本文家电维修技术标签: 延长电池寿命立即解锁什么意思
本文链接地址:https://www.iopcc.com/jiadian/92370.html转载请保留说明!