面向制造和工业环境监控应用的人工智能机器视觉 (何为面向工业生产的技术整合)
整理分享面向制造和工业环境监控应用的人工智能机器视觉 (何为面向工业生产的技术整合),希望有所帮助,仅作参考,欢迎阅读内容。
内容相关其他词:面向智能制造的工业工程,面向制造和工业化的区别,面向制造业的服务企业,面向制造与装配的设计,面向智能制造的工业工程,面向制造和工业制造区别,面向制造和工业的区别,面向制造和工业化的区别,内容如对您有帮助,希望把内容链接给更多的朋友!
图1:安全光幕占用地面空间,部署困难,缺乏灵活性,有时响应能力还有局限性。人工智能相机最大限度地减少了延迟,减少了部署空间以及对带宽的要求,并且易于部署和维护。凌华科技的NEON-系列多合一人工智能相机可以解决延迟的问题。在将结果和指令发送到相关设备(例如机械臂)之前,他会捕获图像并执行所有与人工智能相关的*作(见图1)。与光幕和传统机器视觉设施相比,使用多合一智能相机可以最大限度地减少延迟、减少部署空间和对带宽的要求,并且易于安装和维护。实时的机器视觉人工智能通过提醒工人进入不安全区域并记录该信息以对工人进行再度培训,为增强工人的安全提供好处。记录过去时间的数据,还可能对未来有所帮助。例如,如果工人接近危险区域,机械臂并不需要完全关闭,而是进入一个功能安全的流程循环。诸如此类的例行程序不仅可以提高工人的安全性,还可以提高工厂的运营效率。智能加油当加油车到达制造工厂时,它可能会带来许多安全隐患,而这些问题可以通过智能人工智能视觉轻松解决。首先,如果制动不正确或者失灵,可能导致车辆翻滚。训练人工智能机器视觉*来监控车辆的运动,当其状态发生改变时可以立即发出警报。相关设施还必须在加油的过程中考虑*作人员的位置,因为存在不同类型的分区违规。确保所有现场工人都了解存在的安全风险变得至关重要。例如,有必要在车辆的四个角放置路锥,并确保为车辆加油的*作员穿着合适的个人防护装备——人工智能视觉可以执行所有的安全检查,以确认所有的流程都是正确的。(参见图2)图2:虽然主管在现场可以加强安全流程的执行,但并不总是可行的。如果有人闯入危险区域,人工智能机器视觉就可以立即发出警报。来自人工智能机器视觉*的即时警报可以警告*作员的安全漏洞并防止其受伤。它还创建了问责制;如果有人在没有穿个人防护装备的情况下进入了不安全的区域,那么记录的图像可以标记错误并教育员工,以防止将来再次犯错。行为和位置检测对于制造业而言,“周期时间“是生产效率的关键性能指标。它表示一个团队在产品准备好发货或之前花费在生产项目上的时间。使用人工智能相机技术监控员工的行为和位置,有助于执行标准化流程(SOP)并提高员工的效率,缩短周期时间。图3:电子制造产线上的行为和位置检测,有助于提高生产力,并改善订单、数量和生产线之间的平衡。来自实时*的行为和位置检测扮演者至关重要的作用,它可以将数字内容和信息叠加在模拟量的世界上。行为和位置使用一组骨骼标志点(例如手、肘或肩)来描述身体的位置和运动。人工智能机器视觉让工厂*作员和工人能够专注于身*置是如何影响他们的工作。行为和位置数据是一个很好的培训工具,可以知道*作员如何放置手臂和手才更符合人体工程学、更高效地工作;它还可以改善人们的姿势,这也是另外一个显著的优势。(见图3)**作人员是否在生产线上的工作站上,也可以实现自动化并验证时间表。监控他们是否积极遵守标准流程,确保质量管理和生产线平衡。A*martAOI基于人工智能的智能AOI利用人工检查产品的质量,其耗时有长有短,最终会导致产线的瓶颈。传统的AOI(自动光学检测)机器视觉,凭借其卓越的准确性和高效率,能够比专业的质量控制人员更快地检测到易于发现的产品*。但是,当*难以检测时,例如耳机透视上的*,这些机器视觉*在准确度和一致性方面则难以满足实际需求。虽然大多数制造商采用随机抽样的方法来测试产品是否存在*,但是这种方法在**的生产线上是不适用的,因为每片镜片都需要检查。质量控制人员每班最多只能检查个镜片,因此产生了生产瓶颈。此外,误检和漏检也是不可避免的。由于**是透明的,因此,采用机器数据的检测方式历来是这个行业面临的重大挑战。传统的AOI依赖固定的几何算法来发现*,但从透明物体中获取高质量的图像具有较大的难度,从而导致检测的性能无法被客户接受。使用基于人工智能的智能相机搜集数据用以训练人工智能算法,并持续迭代检测的性能,以此提供更好的解决方案。基于人工智能的智能*可以识别常见的*,例如毛刺、气泡、边缘粗糙、颗粒、划痕等等(见图4),同时会保留检查日志以供客户参考。图4:基于人工智能的智能AOI甚至可以检测透明耳机透视中的微小*,与之前使用人工的质量控制流程相比,检测效率得以显著提升相比人工视觉检测,每个基于人工智能的智能相机可以检测多倍数量的**,而且检测精度从%提高到%。结论利用源自人工智能机器视觉技术所产生的强大且实时的数据,制造商可以获得更多的正常运行时间、获得预防性维护的能力、提高生产力和确保工人安全等等诸多受益。本文重点提及的人工智能机器视觉应用,需要人工智能算法进行深度学习。开发人工智能算法的软件专家需要一个智能的、可靠的平台来执行人工智能模型推理。预装EVA(EdgeVisionAnalytics,边缘视觉分析)软件的人工智能相机解决了传统人工智能视觉*常见的许多问题,提高了兼容性、加快了安装速度,并最大限度地减少了维护工作。想要成功部署人工智能视觉项目,工程师可能需要长达周的时间来进行概念验证(PoC)。选择经过优化的相机和人工智能推理引擎、重新训练人工智能模型、优化*流等都需要较长的学习时间。然而,EVA软件凭借其流水线的结构优势,简化了所有的步骤,并将PoC的时间缩短到2周以内,这也成为启动人工智能视觉项目的理想起点。【关于凌华科技】凌华科技(股票代号:)引领边缘计算,是AI人工智能驱动世界的推动者。我们制造并开发用于嵌入式、分布式与智能计算的边缘硬件与软件解决方案,全球超过家客户信任凌华科技,选择我们作为其关键任务的重要伙伴,从重症监护室的医疗计算机到全球第一辆高速自动驾驶赛车,都有我们的足迹。凌华科技是英特尔、NVIDIA、AWS和SAS的重要合作伙伴,并加入了英特尔顾问委员会、ROS2技术指导委员会以及Autoware自动驾驶开源基金会。我们积极参与了开源技术、机器人、自主化、物联网、5G等超过个标准规范的制定,以驱动智能制造、网络通信、智能医疗、能源、国防军工、智能交通与信息娱乐等领域的创新。凌华科技拥有多名员工和多家合作伙伴。年以来,我们秉持并推动当今和未来技术的发展,创新科技,转动世界。请关注凌华科技LinkedIn,微信公众号(ADLINKTECH),或访问adlinktech**。来源:凌华科技IOT策略解决方案与技术事业处智能工厂事业中心协理杨家玮推荐阅读:GDDR6给FPGA带来的大带宽存储优势以及性能测试使用氮化镓(GaN)提高电源效率I2C通信协议:了解I2CPrimer、PMBus和SMBus为应用选择合适的射频放大器指南ADALM实验:放大器输出级上一篇:稳压管的4种应用电路下一篇:低压差稳压器LDO的基本原理与主要参数特别推荐MP:电表PMIC界新来的“五好学生”氮化镓器件在D类音频功放中的应用及优势如何通过使用外部电路扩展低边电流检测并提高DRV的检测精度SiCMOSFET的设计挑战——如何平衡性能与可靠性集成式光学*如何满足床旁检测仪器的未来需求技术文章更多>>“解剖”便携式医疗设备,看看里面都有啥?如何满足各种环境下汽车USB充电端口要求?电感饱和与开关电源之间的密切关系,这篇文章讲透了!(下)使用UWB技术的卓越汽车中科融合刘欣:从MEMS微振镜芯片入手,全栈式解决3D机器视觉挑战技术*下载更多>>车规与基于V2X的车辆协同主动避撞技术展望数字隔离助力新能源汽车安全隔离的新挑战汽车模块抛负载的解决方案车用连接器的安全创新应用MelexisActuatorsBusinessUnitPosition/CurrentSensors-TriaxisHall热门搜索钽电容碳膜电位器碳膜电阻陶瓷电容陶瓷电容陶瓷滤波器陶瓷谐振器陶瓷振荡器铁电存储器通信广电通讯变压器通讯电源通用技术同步电机同轴连接器图像传感器陀螺传感器万用表万用表使用网络电容微波微波功率管微波开关微波连接器微波器件微波三极管微波振荡器微电机微调电容微动开关网站服务展会资讯关于我们联系我们隐私政策版权声明投稿信箱反馈意见:editor@eecnt*客服电话:-Copyright©*jdwx*深圳市中电网络技术有限公司版权所有家电电器维修维修电器修下载电源网电子发烧友网中电网中国工业电器网连接器矿山设备网工博士智慧农业工业路由器天工网乾坤芯电子元器件采购网亚马逊KOL聚合物锂电池工业自动化设备企业查询连接器塑料机械网农业机械中国IT产经新闻网高低温试验箱functionadsC(banner_id){$.ajax({type:"get",*:"