实现硅光子的美好前景 (硅光子概念股)
整理分享实现硅光子的美好前景 (硅光子概念股),希望有所帮助,仅作参考,欢迎阅读内容。
内容相关其他词:实现硅光子的美学原理,硅光子概念股,实现硅光子的美容仪器,实现硅光子的美学原理,实现硅光子的美容方法,实现硅光子的美容方法,实现硅光子的美容仪器,实现硅光子的美容仪器,内容如对您有帮助,希望把内容链接给更多的朋友!
多年来,硅晶圆代工厂已成功生产大批量的硅晶圆。如此大批量的生产降低了成本,使硅基电子集成电路(IC)不仅经济实惠而且有利可图。与此同时,芯片版图设计规则和工艺开发套件(PDK)的开发促进了整个行业内的IC设计及验证的标准化和优化,帮助设计公司切实可行并有利可图的开发出现今市场中种类繁多的IC和知识产权(IP)。事实证明,被氧化硅包裹的硅可作为一种近乎理想的波导材料,这意味着光信号在这种材料中传播时几乎不会发生衰减,而这正是硅光子设计有广阔市场前景的关键因素之一。在过去十年里,我们固然取得了许多成功,但硅光芯片(PIC)为何没能得到更广泛的采用呢?凭借其诸多优势(传输速度、低功耗、经验证的成熟工艺等),加以硅晶圆生产的成本效益,为什么还没有占领市场呢?答案并不复杂,通过硅晶圆代工厂实现的产品及市场规模化,建立并定制了一系列的晶体管设计技术规范。其中一部分只是惯性使然。晶圆代工厂在IC的摩尔定律模型方面积累了丰富的经验和成功案例。虽然当今的7纳米工艺与到年前的0.5微米工艺有着天壤之别,但这些改进和进步是随着时间的推移,伴随每种新工艺逐步实现的。对现有的机制和工艺略加修改,比从零开始新起炉灶总是要轻松一些,成本也更低。然而,摩尔定律的发展如今也举步维艰。是的,我们可以肯定地说会出现3nm工艺,但它已经不会像以前的工艺节点提升那样带来巨大的性能或面积优势,而且注定会被贴上昂贵的标价。这也意味着市场中出现了拐点机会。但除了这一机会以外,PIC要想成功达到媲美IC的规模,还需要些什么呢?答案之一有赖于IC所实现的标准化和优化。我们需要*作为无晶圆厂的设计开发模式,使其为光子学领域所用。当然,这说起来容易做起来难。但是,我们可以从深入研究该模式及历史开始,了解需要投入的工作。我们来想一想,无晶圆厂IC团队在设计片上*(SOC)时会从晶圆代工厂获得哪些东西。首先是PDK。PDK实质上代表了一份隐式合同,即合理运用适当的电子设计自动化(EDA)软件工具将能够实现目标工艺中可制造和可*作的设计。PDK的核心是设计规则,它们定义了物理版图的制造要求。设计规则检查(DRC)确保在版图中创建的几何形状可以在给定的代工厂工艺节点上成功制造。为了配合设计规则,晶圆代工厂还必须公开GDS或OAS*文件中的层分别用于哪个工艺步骤及制造相应的掩膜版。PDK中还有一个重要部分是器件模型。晶圆代工厂是晶体管领域的专家。他们会细致、准确地描述晶体管在给定结构中的工作情况。只要设计人员正确地构建晶体管,他们就可以放心,器件会按设计预期的那样运行工作。但是,仅有器件模型还不足以实现规模化。如果设计人员不得不把注意力放在确保版图中的每个晶体管都正确设计,那么要设计出我们当前创建的包含数十亿个晶体管的SoC,将会是一项旷日持久的工程。为实现规模化,PDK中加入了更多信息。首先是预先特征化的单元(Pcell)。Pcell允许设计人员在一组已知和允许的参数中进行选择,这些参数可在一定范围内修改,以使一个晶体管或一组晶体管表现出不同的电子行为。更重要的是,这些参数可通过电路原理图形式的预定义和特征化设计来驱动。这种原理图驱动的设计方法使设计人员可以专注于设计需求而不是物理版图,从而大幅提高了开发效率。为了进一步简化流程,PDK还提供了参数化的原理图符号,设计人员可使用这些符号来确保原理图中搭建的模块可以准确无误的代表设计意图。当然,这仍然不够。晶圆代工厂还进一步提供了定制好的标准单元库。这些库包括常用的逻辑单元和其他相对简单的基础模块。晶圆代工厂还提供更大的IP模块和(或)来自第三方供应商的经过定制及验证的模块IP,例如存储器、处理器等。从理论上讲,SoC设计人员可以根据自己的喜好组合其中的任意或全部模块,而不必担心它们的行为和性能。但即使要做到这一点也不轻松。我们如何得知将这些模块组合到一起后的性能如何?数字设计流程正是从这里真正蓬勃发展起来的。附带时序库的标准单元和IP让设计人员可以了解在版图中将它们组合到一起后的行为。这些时序库没有提供详细分析,而是提供各种工艺极限下的相关信息,指示组件在特定工作条件下的行为。通过添加一些参数(通常以LEF库和tech文件的形式),这些库可用于指导一种既*证时序,又可通过布局和布线(P&R)工具来驱动版图的设计流程。然而,即便这些全部到位,IC设计流程也远非按个按钮那么简单,人们依然很可能而且相对容易犯错误,从而造成良率或可靠性问题。尽管如此,在大致了解他们的成功史后,您应该可以明白,设计人员为何不愿放弃所有这些设计模式和安全保障了。这对硅光子意味着什么呢?这意味着,开发类似的工具和组件对于将PIC整合成传统的IC设计及验证流程至关重要,首先要开发一个光子PDK。实际上,尽管面临挑战,但在实现这一目标方面仍取得了可喜的进展。虽然GDS和OAS*文件格式本身并不支持PIC中常见的曲线结构,而且对这些曲线结构进行传统的DRC验证会导致成千上万的误报,但我们已成功找到一些方法,利用专用的DRC来检查PIC版图中存在的实际问题,同时避免产生大量误报。尽管我们尚未实现真正统一的包含定制化单元的完整Pcell光子器件库,但也只有一步之遥了。通过使用基于Python™的Pcell(Pycells),或使用PhoeniXOptoDesigner设计平台或LucedaIPK*S.eda设计框架[1][2][3]等工具,可以获得创建此类Pcell的能力。Calibre®nmLVS™电路验证可以执行简单的器件级黑盒式版图与原理图(LVS)验证,以确保生成的版图中不存在短路或开路,并将从版图中提取的光学设计传递给光学*器,例如Lumerical的Interconnect设计工具[4][5]。Mentor已经发布了TannerL-Edit工具的增强功能,可对集成光子设计进行手动版图布局。更进一步的,Mentor还提供了业界首个集成的电子/光子混合版图自动化工具。自动化工具完成的版图设计将是标签: 硅光子概念股
本文链接地址:https://www.iopcc.com/jiadian/86557.html转载请保留说明!