专注于武汉中小企业服务解决方案提供商

电脑维修、布线、安防监控、数据恢复、采购、回收

所属分类 > 家电维修 > 正文

谁想知道提高汽车电池包容量的“秘方”是什么? (怎样提高汽车性能)

编辑:rootadmin
{本文由家电维修技术小编收集整理资料}乘着新基建的东风,新能源汽车似乎复苏可期。而作为新能源汽车的核心部件,动力电池的容量和续航依旧是当前人们关注的重点。由串联连接、高能量密度、高峰值功率的锂聚合物或磷酸铁锂(LiFePO4)电池单元组成的大电池包,广泛用于从纯电动车辆(EV或BEV)、油电混合动力车辆(HEV)、插电式混合动力车辆(PHEV)到能源存储*(ESS)电动汽车市场。尽管对大容量电池单元的需求不断增长,电池*仍然相当高,问题是即便是较高成本、较高质量的电池单元,重复使用后也会老化且不匹配。交通旅游汽车开动分割线提高具有不匹配电池单元的电池包容量有两种办法:一种是从一开始就使用更大的电池,但这样做的性价比不高;一种是使用主动均衡,这是一种新技术,可以恢复电池包中的电池容量,快速增强动力。全串联电池单元,需要均衡当电池包中的每个电池单元具有相同的充电状态(SoC,StateofCharge)时,我们说电池包中的电池单元是均衡的。SoC是指当电池充电和放电时,单个电池的当前剩余容量相对于其最大容量的比例。例如,一个安时的电池单元若有5安时的剩余容量,则其SoC为%。所有电池单元都必须保持在某一SoC范围内,以避免损坏电池或缩短寿命。SoC的允许最小和最大值因应用而异。在电池运行时间至关重要的应用中,所有电池单元可以在%的最小SoC和%的最大SoC(或满电状态)之间工作。需要最长电池寿命的应用可能会将SoC范围*在最小%到最大%之间。这些是电动汽车和电网储存*的典型SoC*,它们使用非常大且昂贵的电池,更换成本极高。电池管理*(BMS)的主要作用是严密监控电池包中的所有单元,确保没有任何电池单元充电或放电超出该应用的最小和最大SoC限值。对于串联/并联电池单元阵列,一般可以认为并联连接的电池单元彼此之间会自动均衡。也就是说,随着时间推移,只要电池单元端子之间存在导电路径,并联连接的电池单元之间的充电状态就会自动均衡。同样可以认为,串联连接的电池单元的充电状态会随着时间推移而出现差异,原因有多方面。整个电池包中的温度梯度、阻抗、自放电速率或各电池单元负载之间的差异,可能导致SoC逐渐变化。尽管电池包充电和放电电流有助于使这些电池单元间差异变小,但除非周期性地均衡电池单元,否则累积的不匹配性将会有增无减。补偿电池单元的SoC渐变是均衡串联电池的最基本原因。通常情况下,被动或耗散均衡方案足以重新均衡电池包中容量接近的电池单元的SoC。如图1a所示,被动均衡既简单又便宜。然而,被动均衡也非常缓慢,会在电池包内部产生有害的热量,均衡结果是将所有电池单元的剩余容量减少到与电池包中SoC最低的电池单元一致。此外,被动均衡缺乏能力有效解决另一种常见现象——容量不匹配引起的SoC误差。所有电池单元在老化时都会损失容量,损失速率往往不同,原因类似于串联电池单元的充电状态随着时间推移而出现差异。电池包电流均等地流入和流出所有串联电池单元,因此电池包的可用容量取决于电池包中容量最低的电池单元。只有图1b和图1c所示的主动均衡方法可以让电荷在整个电池包中重新分配,补偿电池单元间不匹配所造成的容量损失。

整理分享谁想知道提高汽车电池包容量的“秘方”是什么? (怎样提高汽车性能),希望有所帮助,仅作参考,欢迎阅读内容。

内容相关其他词:提高汽车动力性的方法有哪些,提高汽车动力的方法有什么,提高汽车的效率,主要从哪些方面入手?,提高汽车效率的方法,提高汽车动力的方法有什么,提高汽车动力的方法有什么,提高汽车效率的方法,提高汽车性能的方法,内容如对您有帮助,希望把内容链接给更多的朋友!

图1.电池单元均衡典型拓扑结构电池单元间不匹配,会显著缩短运行时间电池单元间的容量或SoC不匹配可能会严重降低电池包可用容量,除非均衡电池单元。为使电池包容量最大化,要求在电池包充电和放电期间,电池单元是均衡的。在图2所示的例子中,一个单元串联电池包由(标称)安时电池单元组成,最小容量单元与最大容量单元的容量误差为&plu*n;%,对该电池包充电和放电,直至达到预定SoC限值。如果SoC值*在%和%之间,并且不进行均衡,则经过一次完全充电/放电循环之后,电池包可用容量相对于理论可用容量减少%。被动均衡理论上可以在电池包充电阶段均衡各电池单元的SoC,但在放电期间,无法阻止第个单元先于其他单元达到%的SoC水平。即使在电池包充电期间进行被动均衡,在电池包放电期间也会损失可观的容量(不可用)。只有主动均衡解决方案才能恢复容量,在电池包放电期间将电荷从高SoC单元重新分配给低SoC单元。谁想知道提高汽车电池包容量的“秘方”是什么? (怎样提高汽车性能)

图2.电池单元间不匹配导致电池包容量损失的例子图3显示了使用理想主动均衡功能可以%恢复因电池单元间不匹配而导致的容量损失。在稳态使用期间,当电池包从%SoC的完全充电状态放电时,必须从第1个单元(最高容量电池单元)中取出存储的电荷并转移到第个单元(最低容量电池单元),否则第个单元会先于其他单元达到最小%的SoC点,导致电池包必须停止放电以防寿命进一步缩短。类似地,在充电阶段必须将电荷从第个单元中移除,重新分配到第1个单元,否则第个单元会率先达到%的SoC上限,导致充电周期必须停止。在电池包使用寿命中的某个时间点,电池单元老化的差异将不可避免地造成电池单元之间的容量不匹配。只有主动均衡解决方案才能恢复容量,根据需要将电荷从高SoC单元重新分配给低SoC单元。为在电池包使用寿命期间实现最大容量,需要通过主动均衡解决方案来给单个电池单元有效充电和放电,以使整个电池包维持SoC均衡。

图3.理想主动均衡实现容量恢复高效率、双向均衡,可提供最高容量恢复LTC-2(见图4)是专为满足高性能主动均衡需求而设计的新产品。高效率、双向、主动均衡控制ICLTC-2是高性能BMS*的关键组成部分。每个IC可以同时均衡多达6个串联连接的锂离子或磷酸铁锂电池单元。

图4.LTC-2高效率、双向、多电池单元主动均衡器通过在选定电池单元和一个由多达个或更多相邻电池单元组成的子电池包之间重新分配电荷来实现SoC均衡。均衡决策和均衡算法必须由另外的电芯*件和控制LTC-2的*处理器来处理。电池单元放电时,电荷从选定电池单元重新分配到整组相邻电池单元(个或更多)。类似地,电池单元充电时,电荷从整组相邻电池单元(个或更多)转移到选定电池单元。所有均衡器可以沿任一方向同时工作,以尽量缩短电池包均衡时间。LTC-2有一个兼容SPI总线的串行端口。器件可以利用数字隔离器并联连接。多个器件由A0到A4引脚来确定器件*唯一标识。LTC-2的串行接口由4个引脚组成:CSBI、SCKI、SDI和SDO。如果需要,SDO和SDI引脚可以连接在一起,形成单个双向端口。5个*引脚(A0到A4)设置器件*。所有与串行通信相关的引脚都是电压模式,其电平以VREG和V-电源为基准。LTC-2中的每个均衡器都使用非隔离边界模式同步反激式功率级,以实现每个电池单元的高效充电和放电。6个均衡器各自都需要自己的变压器。每个变压器的原边连接在要均衡的电池单元两端,副边连接在个或更多的相邻电池单元上,包括要均衡的电池单元。副边的电池单元数量仅受外部器件的击穿电压*。电池单元的充电和放电电流由外部检测电阻结合相应的外部开关和变压器调整来设置,最高达到A以上。高效率是通过同步*作和适当的器件选择来实现的。各均衡器通过BMS*处理器使能,并且保持使能状态,直到BMS命令均衡停止或检测到故障状态。均衡器效率问题电池包面临的最大克星之一是热量。高环境温度会让电池寿命和性能迅速降低。遗憾的是,在大电流电池*中,为了延长运行时间或实现电池包快速充电,均衡电流也必须很大。均衡器效率低下会导致电池*内部产生有害的热量,必须通过减少给定时间内可运行的均衡器数量或昂贵的散热方法来解决。如图5所示,LTC-2在充电和放电方向均实现%以上的效率,相对于均衡器功耗相同但效率为%的解决方案,前者的均衡电流可以增加一倍以上。此外,更高的均衡器效率会产生更有效的电荷再分配,进而实现更有效的容量恢复和更快的充电。

图5.LTC-2功率级性能结论诸如EV、PHEV和ESS之类的新应用正在迅速增多。消费者始终期望电池使用寿命长,运行可靠,无性能损失。无论使用电池还是汽油作为动力,人们都要求汽车能运行五年以上没有任何明显的性能下降。对EV或PHEV而言,性能等同于电池动力支持的可行驶距离。EV和PHEV供应商不仅要提供高电池性能,还要提供数年的包括最短行驶距离的保修服务,以保持竞争力。随着电动汽车的数量和行驶时间的不断增长,电池包内无规律的电池单元老化正在成为一个长期问题,这也是运行时间缩短的主要原因。串联连接的电池运行时间总是受到电池包中最低容量电池单元的*。一个较弱的电池单元就能拖累整个电池包。对于车辆供应商,由于行驶距离不足而更换或翻新保修期内的电池是非常不划算的。为防止此类代价巨大的事件发生,可以为每个单元使用更大、更昂贵的电池,或者采用LTC-2等高性能主动均衡器来补偿电池单元不均匀老化引起的单元间容量不匹配问题。LTC-2可以让严重不匹配的电池包拥有与电池单元完全匹配且平均容量相同的电池包不相上下的运行时间。

(来源:亚德诺半导体)

标签: 怎样提高汽车性能


本文链接地址:https://www.iopcc.com/jiadian/86046.html转载请保留说明!

上一篇:详解先试后买的高效节能电源设计方法 (先试后买英文)

下一篇:ST市场策略:聚焦亚洲工业市场, 探索电力和能源及电机控制领域增长机会 (st策略营销)

推荐内容:

电脑死机如何维修 电脑死机的常见问题解答

电脑死机如何维修 电脑死机的常见问题解答

常见问题解答,希望有所帮助,仅作参考,欢迎阅读内容。内容相关其他词:,内容如对您有帮助,希望把内容链接给更 ...

修电视不能转牛角尖的啊 (电视机不转换怎么办)

修电视不能转牛角尖的啊 (电视机不转换怎么办)

故障】是声音正常,但图象有重影现象,而且不时有轻微的燥音,而且是时断时续的,根据上述现象,初步判断为高 ...

怎么维修植物灯关断余晖问题 (怎么维修植物灯光)

怎么维修植物灯关断余晖问题 (怎么维修植物灯光)

}种植者现在越来越意识到,“余晖”的微弱光线可以极大地影响植物的产量。正如著名教授布鲁斯博士在他的课程中 ...

苏泊尔CFXB40FC835-75电饭煲指示灯全亮的检修思路 (苏泊尔cfxb40fc835-75电饭煲煮粥)

苏泊尔CFXB40FC835-75电饭煲指示灯全亮的检修思路 (苏泊尔cfxb40fc835-75电饭煲煮粥)

为,通电指示灯全亮,有滴的一声后除开始和香弹煮指示灯全熄息,复位正常。进入煮饭程序,数秒后随着继电器“ ...

苹果iOS 11.3.1更新发布:解决iPhone8第三方换屏无触摸问题 (ios更新11.0)

苹果iOS 11.3.1更新发布:解决iPhone8第三方换屏无触摸问题 (ios更新11.0)

one8设备出现屏幕的触控功能失灵的问题闹得沸沸扬扬,维修人员分析极有可能是苹果没有*触控更新的问题。北京时间 ...

采用TDA9105机芯彩色显示器电源无输出的检修思路 (9015机芯数据)

采用TDA9105机芯彩色显示器电源无输出的检修思路 (9015机芯数据)

电维修*在修理前,首先要断开dianyuan电源所有负载,然后在V处对地接一只W白炽灯泡(或Ω/W的电阻)开机。若电压 ...

老毛桃u盘重装xp系统步骤

老毛桃u盘重装xp系统步骤

,如何用*桃u盘一键装机工具来安装ghostWindowsxp*是很受大家喜欢的一种方法,那么今天小编教大家如何使用*桃u盘重装 ...

联想电脑怎么还原系统? (联想电脑怎么还原)

联想电脑怎么还原系统? (联想电脑怎么还原)

简单的方法就是可以将*还原,很多联想用户就问联想电脑怎么还原*?其实方法很简单,快看看小编是怎么用联想电脑 ...

win11修复dll详细教程 (win11bug修复)

win11修复dll详细教程 (win11bug修复)

游戏或软件无法运行,但是不知道win怎么修复dll,其实只要下载一个软件就可以了。win修复dll详细教程:1、首先下载 ...

win10是不是自带驱动 (window10会自带office吗)

win10是不是自带驱动 (window10会自带office吗)

不知道win*会不会自动安装驱动或者是自身带有驱动。对于这个问题小编觉得win*里已经存在的硬件设备驱动都是自带有 ...

Copyright © 2023 武汉电脑维修 All Rights Reserved.

鄂ICP备2023003026号

免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢!邮箱: opceo@qq.com