Si对比SiC MOSFET 改变技术—是正确的做法 (sicmosfet和igbt)
整理分享Si对比SiC MOSFET 改变技术—是正确的做法 (sicmosfet和igbt),希望有所帮助,仅作参考,欢迎阅读内容。
内容相关其他词:sic mosfet应用,mosfet和sgt,sic mosfet igbt,mosfet和sgt,sic mosfet结构图,sic mosfet应用,silvaco mosfet,sic mosfet结构图,内容如对您有帮助,希望把内容链接给更多的朋友!
英飞凌进一步优化了SiC器件的优势特性——通过使用CoolSiCTrench技术,可以实现具有极高阈值电压(Vth)和低米勒电容的MOSFET器件。相比其他SiCMOSFET,它们对于*的寄生导通效应更具弹性。除了V和V型号之外,英飞凌还扩展了产品组合,加入了VCoolSiCMOSFET,该器件也可用于V电源应用。这些SiC器件具有更高的*效率和稳健性,以及更低的*成本,适用于电信、服务器、电动汽车充电站和电池组等应用。如果在基于Si的成熟MOSFET技术,和基于SiC的较新MOSFET之间进行选择,需要考虑多种因素。应用效率和功率密度与Si器件相比,SiC器件的RDSon在工作温度范围内不易发生波动。使用基于SiC的MOSFET,RDSon数值在°C到°C温度之间仅仅偏移大约1.倍,而使用典型的基于SiMOSFET(例如英飞凌的CoolMOSTMC7器件)时,RDSon则会偏移1.倍。这表明针对基于SiC的MOSFET器件,工作温度对于功率损耗的影响要小得多,因而可以采用高得多的工作温度。因此,基于SiC的MOSFET非常适合高温应用,或者可以使用较简单的*解决方案来实现相同的效率水平。图片来源:儒卓力与IGBT相比,基于SiC的MOSFET具有较低的电导损耗以及可降低多达%的开关损耗。(在使用英飞凌VCoolSiCMOSFET的示例中)驱动器当从Si转换到SiC时,其中一个问题是选择合适的驱动器。如果基于Si的MOSFET驱动器产生的最高栅极导通电压不超过V,它们通常可以继续使用。然而,高达V栅极导通电压可以进一步显着降低电阻RDSon(在°C时可降低多达%),因此,值得考虑改用其它驱动器。另外还建议避免在栅极处出现负电压,因为这会导致VGS(th)发生偏移,从而使RDSon随着工作时间延长而增加。在栅极驱动环路中,源极电感上的电压降导致高di/dt,这可能引起负VGS(off)电平。很高的dv/dts带来了更大的挑战,这是由于半桥配置中第二个开关的栅极漏极电容引起的。可以通过降低dv/dt来避免这个问题,但代价是效率的下降。*负栅极电压的最佳方法是通过开尔文源极概念使用单独的电源和驱动器电路,并集成二极管钳位。位于开关的栅极和源极之间的二极管钳位*栅极出现负电压。反向恢复电荷Qrr特别针对使用导通体二极管进行连续硬换向的谐振拓扑或设计,还必须考虑反向恢复电荷Qrr。当二极管不再导电时,这是必须从集成的体二极管中去除的电荷(存在于所有二极管中)。各组件制造商都做出了巨大的努力,以便尽可能地降低这种电荷。英飞凌的“FastDiodeCoolMOS”系列就是这些努力成果的示例。它们具有更快速的体二极管,与前代产品相比,可以将Qrr降低倍。英飞凌的CoolSiC系列在这方面取得了进步,与最新的CoolMOS组件相比,这些SiCMOSFET实现了倍的性能改进。Trench技术极大程度地减少了使用中的功率损耗,并提供了极高的运行可靠性。采用CoolSiC技术,用户可以开发具有更少组件和磁性元件及散热器的*,从而简化*设计,并减低体积和成本。借助Trench技术,这些组件还保证达到极低的使用损耗和极高的运行可靠性。功率因数校正(PFC)目前行业的重点是提高*效率。为了实现至少%的效率数值,业界针对功率因数校正(PFC)付出了很多努力。具备优化Qrr的基于SiCMOSFET有助于实现这一目标。它们可以实现用于PFC的硬开关半桥/全桥拓扑。针对CoolMOS技术,英飞凌先前推荐“三角电流模式(TriangularCurrentMode)”方法,但使用SiC器件可以实现具有连续导通模式的图腾柱PFC。输出电容COSS在硬开关拓扑中必须消耗存储的能量EOSS;对于最新的CoolMOS型款,这种能量通常较大。然而,与图腾柱PFC的导通损耗相比,它仍然相对较低,因此可以忽略不计,至少初期如此。较低的电容意味着可以从更快的开关速度中受益,但这也可能引起导通期间的漏极源极电压过冲(VDS)。针对基于Si的MOSFET,可以通过使用外部栅极电阻加以补偿,以降低开关速率,并且在漏源处实现所需的%电压降额。这种解决方案的缺点是增加电流会导致更多开关损耗,尤其是在关断期间。在V漏源电压下,基于SiC的MOSFET的输出电容要大于可比较的基于Si的功率半导体器件,但COSS/VDS的关系更加线性。其结果是,相比基于Si的MOSFET型款,基于SiC的MOSFET允许在相同的电路中使用较低的外部电阻,而不会超出最大漏源电压。这在某些电路拓扑中是有利的,例如在LLC谐振DC/DC转换器中,可以省去额外的栅极电阻器。结论尽管SiC技术拥有诸多优势,但基于Si的MOSFET不一定会过时。部分原因是由于体二极管的阈值电压要高得多,直接使用基于SiC的型款来替换基于Si的MOSFET,将会导致体二极管的功率损耗增加四倍,基本上抵消了效率增益。如要真正受益于基于SiC的MOSFET的更高效率,必须在MOSFET通道上使用PFC的升压功能,而不是在体二极管上反向使用。还必须优化死区时间性能,以充分利用基于SiC的MOSFET的优势。作者:儒卓力功率产品销售经理HannahMetzner和英飞凌PSS部门高级工程师RenéMente