TFT液晶显示屏原理与构造(第三讲) (tft-lcd液晶屏)
整理分享TFT液晶显示屏原理与构造(第三讲) (tft-lcd液晶屏),希望有所帮助,仅作参考,欢迎阅读内容。
内容相关其他词:tft液晶屏怎么样,tftlcd液晶屏,tft液晶屏原理,液晶屏 tft,tft液晶屏原理,tft液晶屏原理,tft液晶屏原理,tft液晶屏工作原理,内容如对您有帮助,希望把内容链接给更多的朋友!
前面说过:液晶的分子对电场及其敏感;在电场的作用下液晶的分子要产生扭曲,现在我们看看在液晶分子周边施加电场的情况下液晶的分子会有什么变化,对通过的偏振光又有什么影响?我们在液晶分子的两边设置两个电极,并且施加电压,这样在液晶分子周边就形成相应的电场,此时液晶分子在电场的作用下,改变了排列的方向,不受沟槽的*;全部竖立排列,如图1-3-所示;时如果有一偏振光由下面经过液晶分子射入,偏振光就不再受液晶分子扭转控制,直接由上面射出,如图1-3-所示,可以看出,施加电场的液晶分子;液晶分子重新排列;偏振光经过液晶层就不发生任何扭转;保持原方向、角度由上方直接射出。这是液晶分子在有电场及外力的作用下,液晶分子对通过偏振光的作用—–角度不变。通过上面的介绍可以得到如下结论:偏振片的作用是:只允许和偏振轴平行的偏振波通过。配向膜的作用是:在无电场的情况下,规范液晶分子排列,使一个像素区域一层分子;逐步扭曲度;并带动通过的偏振波也扭曲度。液晶层的作用是:在有电场的情况下改变液晶分子排列以控制偏振波的振动轴向。6、液晶屏成像过程对于液晶屏,只要理解了;偏振片和配向膜及液晶分子在电场下的作用,液晶屏的成像原理也就明白了。图1-3-所示;是液晶屏的液晶分子上不加电信号时的光线通过情况,图1-3-所示是在液晶屏的液晶分子施加电信号时光线通过的情况。液晶屏的液晶分子不加电信号时光线通过情况:由下面背光源射出的自然光经过下偏振片后;允许和偏振片偏振轴平行的水平偏振光通过,水平偏振光向上穿过下配向膜进入液晶分子层,由前所述:液晶分子层是充满在两片刻有相互垂直沟槽的配向膜之间,贴近配向膜的液晶分子则平卧在配向膜的沟槽中间,由于上下配向膜的沟槽是相互垂直,所以液晶层的最上面分子和最下面分子是相互垂直的位置,这最上面和最下面相互垂直的两个分子之间的分子则是逐步的由水平向垂直扭转,如图1-3-中液晶层分子扭转状态所示。下面射入的水平偏振光进入液晶层后,向上随液晶分子的扭曲排列,也逐步扭转度变成垂直偏振光(图1-2-中的扁平带则是偏振光的示意图),经过上偏振模射出,此时;上偏振片的偏振轴方向,正好和射出的偏振光平行,所以偏振光顺利的通过偏振片射出。液晶屏在不加电信号控制的情况下,光线可以顺利的通过。液晶屏的液晶分子在施加电信号时光线通过情况:由下面背光源射出的自然光经过下偏振片后;允许和偏振片偏振轴平行的水平偏振光通过,水平偏振光向上穿过下配向膜进入液晶分子层,此时由于电信号的施加,在液晶分子周围形成相应的电场,电场的产生,改变了液晶分子排列的次序,原来的扭曲排列,变成竖立的平行排列,如图1-3-中液晶层分子排列状态所示;分子之间排列关系不再扭曲,由下面射入的水平偏振光进入液晶层后,向上的传递也就不再产生扭转现象,而是仍旧按照原来射入的水平角度,经过上偏振模射出,此时;上偏振片的偏振轴方向,正好和射出的偏振光相互垂直,所以偏振光无法通过偏振片射出。液晶屏在施加电信号控制的情况下,光线受到阻碍不能通过上偏振片。此时我们看到的是无光。以上谈到的是产生一个像素光点的光线控制情况,在一个液晶屏上千千万万个这样的被单独控制的液晶分子排列在一起,分别受图像电信号产生的电场控制,偏振光的扭曲分别随图像电信号产生的电场变化,这样上配向膜射出的偏振波的角度也就相应变化,上偏振片对这些偏振角变化的偏振光进行通过和阻止控制最终在上偏振片上形成图像(上偏振片也就是液晶屏的屏面)7、图像的灰度控制灰度就是图像的层次,一幅逼真的不失真的图像都有丰富的层次,也就是在荧光屏上组成图像的每一个像素光点必须是能由亮到暗逐渐的变化的,也就像普通的CRT荧光屏上面的光点是受到CRT阴极和栅极电位差控制的,逐步改变其电位的大小,电子枪射向荧光屏的束电流也逐步变化;荧光屏上光点的亮度也逐步变化。对于液晶屏来说:因为液晶屏是被动发光,这就是在液晶屏上必须控制每一个像素点对光线通过的穿透率,对于这种扭曲型分子排列的液晶来说:当扭曲度时;光线几乎全部通过,当分子在弱电场的作用下,分子的排列略有改变时;就只有部分光线能通过,这样只要适当的改变施加电压的强度,就可以达到控制通过光线强度的目的。这样也就达到了控制图像灰度的目的。未完,请继续浏览下一讲标签: tft-lcd液晶屏
本文链接地址:https://www.iopcc.com/jiadian/22455.html转载请保留说明!